Inventing Play-Doh: Repurposing an Obsolete Product

History provides numerous examples of what could be called “accidental” inventions– inventions that were discovered or developed for one problem or purpose while the inventor was working on something else. Examples include penicillin and the slinky, among reported others.

An article at the Smithsonian explains the origins of Play-Doh. The creation of the Play-Doh material was not an accident. Instead the product owner found a new use for an existing product.

The existing product was a compound originally used for wiping and removing soot from wallpaper. Demand was falling for this product as fuel sources for heating moved from dirtier coal to cleaner oil, gas, and electricity. Joseph McVicker’s company selling the wallpaper cleaner was struggling when his sister-in-law Kay Zufall, a nursery school teacher, found children liked molding the pliable compound into various shapes. Play-Doh as a childern’s product was born.

Zufall reportedly coined the Play-Doh product name as well.

Zukfall, as a teacher, saw the world and the product differently from her perspective working with children. Something that was probably not obvious to McVicker. This is an example of an idea born not from solitude, but from a mix of perspectives.

A Technique for Producing Ideas

“After experiencing a desire to invent a particular thing, I may go on for months or years with the idea in the back of my head,” said Nikola Tesla. Tesla calls this the incubation period, which precedes direct effort on the invention. Science writer, Steve Johnson, called this a slow hunch. And, in his 1940 publication, A Technique for Producing Ideas, James Young also calls it incubation as a part of the metal digestive process.

Young lays out a five step process for producing ideas. He says that:

“the production of ideas is just as definite a process as the production of Fords;… that in this production the mind follows an operative technique which can be learned and controlled; and that its effective use is just as much a matter of practice in the technique as is effective use of any tool.”

Young asserts the an idea “is nothing more or less than a combination of old elements.” He continues “the capacity to bring old elements into new combinations depends largely on the ability to see relationships.”

Step 1: Gather Material

The first step is to gather raw material. Young says that we constantly try to dodge the work of gathering raw material because its “a terrible chore.” You should gather both material specific to the problem at hand and general material.

Regarding general material, wide curiosity and exploration of the world is the rule. Galileo’s invention of the pendulum clock was the product of Galileo’s experiences and cross-disciplinary studies over 58 years. Similarity, Young says every really good creative person in advertising (his field) has two notable characteristics:

“First, there was no subject under the sun which he could not easily get interested…Every facet of life has fascination for him. Second, he was an extensive browser in all sorts of fields of information.”

Young said ideas in advertising result from a new combination of specific knowledge about products and people with general knowledge about life and events. He says:

“The more of the elements of that world which are stored away in that pattern making machine, the mind, the more chances are increased for the production of new and striking combinations, or ideas.”

The material gathering is a life long job.

Step 2: Active Mental Digestion

In the second step, you actively work the information over in your mind. “What you do is to take the different bits of material which you have gathered and feel them all over…with the tentacles of the mind.” He says after a while you will reach a hopeless stage where “Everything is a jumble in your mind, with no clear insight anywhere.” This is where you move to the third step.

Step 3: Incubation, Put It Out of Your Mind

In the “third stage you make absolutely no effort of a direct nature” and put it out of your mind. This is the step where Tesla describes he  “may go on for months or years with the idea in the back of [his] head.” Young says “What you have to do at this time, apparently, is to turn the problem over to your unconscious mind and let it work while you sleep.”

Step 4: The Idea Appears

Young says that if you really did steps 1-3 properly, in the fourth step, the idea will seem to appear out of nowhere. It will come to you when you are least expecting it.

Step 5: Refinement

In the last step you refine the idea to work in the real world conditions and constrains at issue.

While Young’s field is advertising, the process appears applicable to idea generation generally. Read Young’s full work for more details on the process and stories that accompany it.

Overcoming the Difficulty of Recognizing Good Ideas

Knowledge formation, even when theoretical, takes time, some boredom, and the freedom that comes from having another occupation, therefore allowing one to escape the journalistic-style pressure of modern publish-and-perish academia… –Nassim Talab.

Antifragile“The future is already here — it’s just not evenly distributed” is a quote often attributed to William Gibson. Nassiam Taleb, the author of Black Swan, and more recently Antifragile: Things That Gain from Disorder, asserts that in many cases you cannot predict the future. We have a hard time recognizing good ideas and implementing them. Having time and cultivating a capacity for boredom, as explained below, can contribute to one’s ability to recognize good ideas.

When a good idea succeeds, it can have a huge upside–a much greater upside than downside. Taleb says that anything that has more upside than downside from random events is antifragile. Further, antifragility describes “things that benefit from shocks; [] thrive and grow when exposed to volatility, randomness, disorder, and stressors and love adventure, risk, and uncertainty.” Inventing can be an antifragile activity.

The Difficulty of Recognizing Good Ideas

Taleb points out we have a difficult time recognizing opportunities that are staring us in the face. This is the same vein as the Gibson quote above, which was repeated by Chris Anderson, editor of Wired Magazine. Taleb says:

It struck me how lacking in imagination we are: we had been putting out suitcase on top of a cart with wheels, but nobody thought of putting tiny wheels directly under the suitcase…Can you imagine that it took close to six thousand years between the invention of the wheel (by, we assume, the Mesopotamians) and this brilliant implementation (by some luggage maker in a drab industrial suburb)? And billions of hours spent by travelers like myself schlepping luggage through corridors full of rude customs officers. Worse, this took place three decades or so after we put a man on the moon….Indeed, though [the wheeled suitcase was] extremely consequential, we are talking about something trivial: a very simple technology.

This tells us something about the way we map the future. We humans lack imagination, to the point of not even knowing what tomorrow’s important things look like.

Although not the case with the wheeled suit case, sometimes the difficulty in recognizing good ideas is–as Peter Thiel notes–they often look like bad ideas.

As Steven Johnson asserted in his book Where Good Ideas Come From: The Natural History of Innovation, we need to cultivate opportunities where ideas can collide unpredictably. Taleb too asserts that we need randomness to stumble upon good ideas:

We are managed by small (or large) accidental changes, more accidental than we admit. We talk big but hardly have any imagination, except for a few visionaries who seem to recognize the optionality of things. We need some randomness to help us out–with a double dose of antifragility.

Implementation Does Not Always Follow Quickly From Invention

Even when you do stumble upon a good idea and develop it into an invention, there’s still the difficult road to implementation and commercial success. This is, in part, why there are many many uncommercialized inventions described in patents and patent applications, which you can’t find on the market.

…Implementation does not necessarily proceed from invention. It too, requires luck and circumstances. The history of medicine is littered with the strange sequence of discovery of a cure followed, much later, by the implementation—as if the two were completely separate ventures, the second harder, much harder, than the first. Just taking something to market requires struggling against a collection of naysayers, administrators, empty suits, formalists, mountains of details that invite you to drown, and one’s own discouraged mood on occasion. In other words, to identify the option (again, there is this option blindness). This is where all you need is the wisdom to realize what you have on your hands.

For there is a category of things that we can call half-invented, and taking the half-invented into the invented is often the real breakthrough. Sometimes you need a visionary to figure out what to do with a discovery, a vision that he and only he can have. For instance, take the computer mouse, or what is call the graphical interface: it took Steve Jobs to put it on your desk, then laptop–only he had a vision of the dialectic between images and humans–later adding sound to a trilectic. The things, as they say, that are “staring at us.”

The difficulty of recognizing good ideas, and the uncertainty of proceeding with an idea, contributes to huge upsides for those that do.

The Need for Time to Allow Ideas to Percolate: The Clergy and Hobbyists

Chris Dixon said, “What the smartest people do on the weekends is what everyone else will do during the week in ten years.” Taleb makes a similar point.  Many significant inventions were developed by hobbyist and the English clergy. They had ample time to let ideas percolate and collide–in other words, to invent.

Knowledge formation, even when theoretical, takes time, some boredom, and the freedom that comes from having another occupation, therefore allowing one to escape the journalistic-style pressure of modern publish-and-perish academia to produce cosmetic knowledge…

There were two main sources of technical knowledge and innovation in the nineteenth and early twentieth centuries: the hobbyist and the English rector, both of whom were generally in barbell situations.

An extraordinary proportion of work came out of the rector, the English parish priest with no worries, erudition, a large or at least comfortable house, domestic help, a reliable supply of tea and scones with clotted cream, and an abundance of free time. And, of course, optionality. The Reverends Thomas Bayes (as in Bayesian probability) and Thomas Malthus (Malthusian overpopulation) are the most famous. But there are many more surprises, cataloged in Bill Bryson’s Home, in which the author found ten times more vicars and clergymen leaving recorded traces for posterity than scientists, physicists, economists, and even inventors. In addition to the previous two giants, I randomly list contributions by country clergymen: Edmund Cartwright invented the power loom, contributing to the Industrial Revolution; Rev. Jack Russell bred the terrier; Rev. William Buckland was the first authority on dinosaurs; Rev. William Greenwell invented modern archaeology; Rev. Octavius Pickard-Cambridge was the foremost authority on spiders; Rev. George Garrett invented the submarine; Rev. Gilbert White was the most esteemed naturalist of his day; Rev. M. J. Berkeley was the top expert on fungi; Rev. John Michell helped discover Uranus; and many more.

The Industrial Revolution, for a refresher, came from “technologists building technology,” or what he [Terence Kealey] calls “hobby science.” Take again the steam engine, the one artifact that more than anything else embodies the Industrial Revolution. As we saw, we had a blueprint of how to build it from Hero of Alexandria. Yet the theory didn’t interest anyone for about two millennia. So practice and rediscovery had to be the cause of the interest in Hero’s blueprint, not the other way around.

Having free time and cultivating a capacity for boredom allows ideas to percolate, even subconsciously. This appears to enhance the ability to recognize and implement good ideas and to possibly profit from the antifragile nature of inventing.

Antifragle is a thought provoking book in its entirety with possible wide ranging applicability.